Stationary Euler flows near the Kolmogorov and Poiseuille flows

Necas PDE seminar - Mathematical Institute of the Czech Academy of Sciences

Michele Coti Zelati

March 16, 2021

Imperial College London

Table of contents

- 1. Longtime dynamics in 2d fluids
- 2. The Couette flow
- 3. Steady states
- 4. The Kolmogorov flow
- 5. Remarks and consequences

Longtime dynamics in 2d fluids

The Navier-Stokes and Euler equations

In a 2d domain, consider

$$\begin{cases} \partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla) \mathbf{U} + \nabla P = \nu \Delta \mathbf{U}, \\ \nabla \cdot \mathbf{U} = 0. \end{cases}$$

- $\boldsymbol{U} = (U_1, U_2)$ is the velocity field of the fluid
- P is the scalar pressure

The Navier-Stokes and Euler equations

In a 2d domain, consider

$$\begin{cases} \partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla) \mathbf{U} + \nabla P = \nu \Delta \mathbf{U}, \\ \nabla \cdot \mathbf{U} = 0. \end{cases}$$

- $\boldsymbol{U} = (U_1, U_2)$ is the velocity field of the fluid
- P is the scalar pressure
- \bullet $\nu \geq 0$ is the inverse Reynolds number
 - $\nu = 0$: Inviscid fluid \rightarrow Euler equations
 - $\nu > 0$: Viscous fluid \rightarrow Navier-Stokes equations

The Navier-Stokes and Euler equations

In a 2d domain, consider

$$\begin{cases} \partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla) \mathbf{U} + \nabla P = \nu \Delta \mathbf{U}, \\ \nabla \cdot \mathbf{U} = 0. \end{cases}$$

- $\boldsymbol{U} = (U_1, U_2)$ is the velocity field of the fluid
- *P* is the scalar pressure
- \bullet $\nu \geq$ 0 is the inverse Reynolds number
 - $\nu = 0$: Inviscid fluid \rightarrow Euler equations
 - $\nu >$ 0: Viscous fluid ightarrow Navier-Stokes equations

In vorticity formulation $\Omega = \nabla^{\perp} \cdot \boldsymbol{U} = -\partial_{y} U_{1} + \partial_{x} U_{2}$:

$$\begin{cases} \partial_t \Omega + \boldsymbol{U} \cdot \nabla \Omega = \nu \Delta \Omega, \\ \boldsymbol{U} = \nabla^{\perp} \Psi, \quad \Delta \Psi = \Omega. \end{cases}$$

Main features

- Smooth solutions remain smooth and are global $(\nu \geq 0)$
- All L^p norms are conserved $(\nu = 0)$

What happens as $t \to \infty$?

- ullet In (bounded) domains, all mean-zero solutions decay to 0 (u > 0)
- For $\nu = 0$, the dynamics can be very complicated: there is no global relaxation mechanism

Vorticity mixing

Mixing can be thought of as a cascading process in which information travels to smaller and smaller spatial scales.

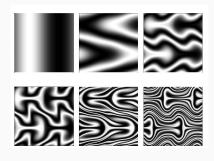


Figure 1: No diffusion (Doering et al.)

Understanding this fundamental process sheds light on:

- Relaxation towards stationary states and coherent structures
- Meta-stable behavior in ocean/atmospheric models
- The derivation of turbulence scaling laws (Kolmogorov, Batchelor)

A conjecture

Longtime behavior for 2D Euler

The generic solution to the 2D Euler equations in vorticity form on \mathbb{T}^2 is such that the orbit $\{\Omega(t): t \in \mathbb{R}\}$ is not precompact in $L^2(\mathbb{T}^2)$.

- All solutions that experience some vorticity mixing as $t \to \infty$ are not precompact (very hard to prove in general!)
- Understand the dynamics near steady states such as shear flows and vortices
- Understand the (local) structure of known steady states

Steady states and perturbations

Consider a given equilibrium U^S , write $U = U^S + u$:

$$\begin{cases} \partial_t \mathbf{u} + (\mathbf{U}^S \cdot \nabla)\mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{U}^S + \nabla p = \nu \Delta \mathbf{u} - (\mathbf{u} \cdot \nabla)\mathbf{u}, \\ \nabla \cdot \mathbf{u} = 0, \qquad \mathbf{u}(t = 0) = \mathbf{u}^{in}. \end{cases}$$

Steady states and perturbations

Consider a given equilibrium U^S , write $U = U^S + u$:

$$\begin{cases} \partial_t \mathbf{u} + (\mathbf{U}^S \cdot \nabla)\mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{U}^S + \nabla p = \nu \Delta \mathbf{u} - (\mathbf{u} \cdot \nabla)\mathbf{u}, \\ \nabla \cdot \mathbf{u} = 0, \qquad \mathbf{u}(t = 0) = \mathbf{u}^{in}. \end{cases}$$

Motto: "Linear stability implies some nonlinear stability"

- Linear spectral / mode stability (e.g. Rayleigh-Fjørtoft)
- ullet Linear Lyapunov stability (but, non-normality and $u o 0 \dots$)

However...

Dynamics near steady states

Given two norms X and Y, the equilibrium U^S is called (asymptotically) stable with exponent $\gamma \geq 0$ if

$$\| oldsymbol{u}^{in} \|_{X} \lesssim
u^{\gamma} \qquad \Rightarrow \qquad \begin{cases} \| oldsymbol{u}(t) \|_{Y} \ll 1, & orall t > 0, \\ \| oldsymbol{u}(t) \|_{Y} o 0, & ext{as } t o \infty. \end{cases}$$

7

Dynamics near steady states

Given two norms X and Y, the equilibrium U^S is called (asymptotically) stable with exponent $\gamma \geq 0$ if

$$\| \boldsymbol{u}^{in} \|_{X} \lesssim \nu^{\gamma} \qquad \Rightarrow \qquad \begin{cases} \| \boldsymbol{u}(t) \|_{Y} \ll 1, & \forall t > 0, \\ \| \boldsymbol{u}(t) \|_{Y} \to 0, & \text{as } t \to \infty. \end{cases}$$

No canonical choice of norms

- choice of Y: from linear dynamics
- choice of X: not unique, γ can depend on X
- when $\nu = 0$ take $\gamma = 0$, $\forall \epsilon \, \exists \delta ...$

7

Shear flows

Class of equilibria: shears $\boldsymbol{U}^S = (v(y), 0)$.

In vorticity form:

$$\begin{cases} \partial_t \omega + \mathbf{v}(\mathbf{y}) \partial_{\mathbf{x}} \omega - \mathbf{v}''(\mathbf{y}) \partial_{\mathbf{x}} \psi - \nu \Delta \omega = -\mathbf{u} \cdot \nabla \omega, \\ \mathbf{u} = \nabla^{\perp} \psi, \quad \Delta \psi = \omega. \end{cases}$$

- Couette: v(y) = y, on $\mathbb{T} \times \mathbb{R}$
- Poiseuille: $v(y) = y^2$, on $\mathbb{T} \times \mathbb{R}$
- Kolmogorov: $v(y) = \sin y$, on \mathbb{T}^2

The Couette flow

Couette flow

If
$$v(y) = y$$
:

$$\partial_t \omega + y \partial_x \omega = \nu \Delta \omega.$$

The solution is explicit:

$$\widehat{\omega}(t,k,\eta) = \widehat{\omega}^{in}(k,\eta+kt) \exp\left\{-\nu \int_0^t \left[k^2 + |\eta+kt-k\tau|^2\right] d\tau\right\}.$$

9

Couette flow

If
$$v(y) = y$$
:

$$\partial_t \omega + y \partial_x \omega = \nu \Delta \omega.$$

The solution is explicit:

$$\widehat{\omega}(t,k,\eta) = \widehat{\omega}^{in}(k,\eta+kt) \exp\left\{-\nu \int_0^t \left[k^2 + |\eta+kt-k\tau|^2\right] d\tau\right\}.$$

If v = 0, info goes to high frequencies (when k ≠ 0).
 Inviscid damping:

$$||u_1(t) - \langle u_1(t) \rangle_{\times}||_{L^2} \lesssim \frac{1}{\langle t \rangle} ||\omega^{in}||_{H^1},$$

$$||u_2(t)||_{L^2} \lesssim \frac{1}{\langle t \rangle^2} ||\omega^{in}||_{H^2}.$$

Couette flow

If
$$v(y) = y$$
:

$$\partial_t \omega + y \partial_x \omega = \nu \Delta \omega.$$

The solution is explicit:

$$\widehat{\omega}(t,k,\eta) = \widehat{\omega}^{in}(k,\eta+kt) \exp\left\{-\nu \int_0^t \left[k^2 + |\eta+kt-k\tau|^2\right] d\tau\right\}.$$

• If $\nu = 0$, info goes to high frequencies (when $k \neq 0$). Inviscid damping:

$$\begin{split} \|u_1(t) - \langle u_1(t) \rangle_{\mathsf{x}} \|_{L^2} &\lesssim \frac{1}{\langle t \rangle} \|\omega^{in}\|_{H^1}, \\ \|u_2(t)\|_{L^2} &\lesssim \frac{1}{\langle t \rangle^2} \|\omega^{in}\|_{H^2}. \end{split}$$

• If $\nu > 0$, then we have enhanced dissipation:

$$\|\omega(t) - \langle \omega(t) \rangle_{\mathsf{x}}\|_{L^2}^2 \leq \|\omega^{\mathsf{in}} - \langle \omega^{\mathsf{in}} \rangle_{\mathsf{x}}\|_{L^2}^2 \mathrm{e}^{-\frac{1}{6}\nu t^3}.$$

Results

What happens at the nonlinear level?

For small perturbations, ${\it u}(t,x,y) o (u^\infty(y),0)$ as $t o \infty$

Results

What happens at the nonlinear level?

For small perturbations,
$${\it u}(t,x,y) o (u^\infty(y),0)$$
 as $t o \infty$

For v = 0: $\|\omega^{in}\|_X \lesssim \varepsilon$ implies inviscid damping?

- Bedrossian, Masmoudi '13: if the perturbation is small in Gevrey-2⁻, then inviscid damping holds. That is, sufficiently smooth, non-shear perturbations of the Couette flow $\boldsymbol{U}=(y,0)$ undergo vorticity mixing and inviscid damping.
- Deng, Masmoudi '18: Gevrey-2 is optimal.

Results

What happens at the nonlinear level?

For small perturbations,
$${\it u}(t,x,y) o (u^{\infty}(y),0)$$
 as $t o \infty$

For v = 0: $\|\omega^{in}\|_X \lesssim \varepsilon$ implies inviscid damping?

- Bedrossian, Masmoudi '13: if the perturbation is small in Gevrey-2⁻, then inviscid damping holds. That is, sufficiently smooth, non-shear perturbations of the Couette flow $\boldsymbol{U} = (y,0)$ undergo vorticity mixing and inviscid damping.
- Deng, Masmoudi '18: Gevrey-2 is optimal.

For $\nu > 0$: $\|\omega^{in}\|_X \lesssim \nu^{\gamma}$ implies enhanced dissipation?

- Bedrossian, Masmoudi, Vicol '14: $\gamma = 0$ if X is Gevrey-2 $^-$.
- Bedrossian, Vicol and Wang '16: $\gamma = 1/2$ if $X = H^s$, s > 1.
- Masmoudi, Zhao '19: $\gamma = 1/3$ if $X = H^s$, s > 40.

Linear results

- 2D Euler (after 2014): Zillinger (monotone shears near Couette),
 Wei, Zhang et al (monotone shears, shears with simple critical pts),
 Bedrossian, CZ, Vicol (smooth vortices), CZ, Zillinger (singular vortices).
- 2D NSE (after 2014): Wei, Zhang et al (Kolmogorov), CZ, Elgindi, Widmayer (Poiseuille).
- 2D compressible Euler/NSE (2020): Antonelli, Dolce, Marcati (Couette)
- 2D stratified fluids/Boussinesq (after 2018): Yang, Lin (inviscid Couette), Zillinger and Deng, Wu, Zhang (viscous and diffusive Couette), Bianchini, CZ, Dolce (inviscid close to Couette)
 Masmoudi, Said-Houari, Zhao (inviscid and diffusive Couette).

Nonlinear results

2D Euler

- Same as Bedrossian-Masmoudi for monotonic flows $\boldsymbol{U}=(u(y),0)$ on $\mathbb{T}\times[-1,1]$ (Ionescu, Jia '19 and Masmoudi, Zhao '19)
- Same as Bedrossian-Masmoudi for for the point-vortex (Ionescu, Jia '19)

2D NSE

 Nonlinear transition threshold: Wei, Zhang et al (Kolmogorov on rectangular torus), CZ, Elgindi, Widmayer (Poiseuille).

2D Boussinesq

Zillinger and Deng, Wu, Zhang (viscous and diffusive Couette),
 Masmoudi, Said-Houari, Zhao (inviscid and diffusive Couette).

Steady states

Local structure of steady states

- Lin, Zeng '10: there are steady states near Couette in H^s (s < 3/2), with cat's eye structure (i.e. nontrivial x-dependence). All steady states near Couette in H^s (s > 3/2) are shears.
- Choffrut, Sverak '12: Neighborhoods of non-degenerate steady states in an annulus can contain only non-degenerate steady states.
- Constantin, Drivas, Ginsberg '20: there are perturbations of non-degenerate Arnold stable steady states that are non-degenerate Arnold stable

Local vs global degeneracies

Write Euler near a shear (u(y), 0):

$$u\partial_{\mathbf{x}}\omega - u''\Delta^{-1}\partial_{\mathbf{x}}\omega + \mathbf{u}\cdot\nabla\omega = 0$$

- Local degeneracy: *u* has a (simple) critical point
- Global degeneracy: The kernel of the linear operator

$$\mathcal{L}_{u} = u\partial_{x} - u''\Delta^{-1}\partial_{x}$$

is "big" (does not only contain shears)

Question: what is the role of degeneracies in the local structure of steady states?

Examples

- Couette: v(y) = y, on $\mathbb{T} \times [-1, 1]$, is non-degenerate
- Poiseuille: $v(y) = y^2$, on $\mathbb{T} \times [-1,1]$, is locally degenerate but the kernel of

$$\mathcal{L}_P = y^2 \partial_x - 2\Delta^{-1} \partial_x$$

only contains shears

• Kolmogorov: $v(y) = \sin y$, on \mathbb{T}^2 is both locally and globally degenerate, since the kernel of

$$\mathcal{L}_K = \sin y (1 + \Delta^{-1}) \partial_x$$

contains also $\{\sin x, \cos x\}$. This does not happen on a rectangular torus $\mathbb{T}^2_\delta := [0, 2\pi\delta] \times [0, 2\pi], \ \delta > 0$ with $\delta \notin \mathbb{N}$.

The Kolmogorov flow

Steady Euler flows

Any steady Euler flows ${\it {f U}}=
abla^{\perp}\Psi$ satisfies

$$\nabla^{\perp}\Psi\cdot\nabla\Delta\Psi=0.$$

Hence, if

$$\Delta \Psi = F(\Psi), \qquad F \in C^1,$$

then Ψ is a steady solution. Kolmogorov flow is $\mathbf{U}_K = (\sin y, 0)$, hence $\Psi_K := \cos(y)$, and

$$\Delta \Psi_K = F_K(\Psi_K), \qquad F_K(z) = -z.$$

Structures near Kolmogorov

Structures near Kolmogorov [CZ, Elgindi, Widmayer '20]

There exists $\varepsilon_0>0$ such that for any $0<\varepsilon\leq\varepsilon_0$ there exist analytic functions $\Psi_\varepsilon\in C^\omega(\mathbb{T}^2)$ and $F_\varepsilon\in C^\omega(\mathbb{R})$ satisfying

$$\Delta \Psi_{\varepsilon} = F_{\varepsilon}(\Psi_{\varepsilon}) \tag{1}$$

and

$$\|\cos(y) - \Psi_{\varepsilon}\|_{C^{\omega}(\mathbb{T}^2)} = O(\varepsilon),$$
 (2)

with

$$\langle \Psi_{\varepsilon}, \cos(x) \cos(4y) \rangle = -\varepsilon^2 \frac{\pi^2}{128} + O(\varepsilon^3).$$
 (3)

Structures near Kolmogorov

Structures near Kolmogorov [CZ, Elgindi, Widmayer '20]

There exists $\varepsilon_0>0$ such that for any $0<\varepsilon\leq\varepsilon_0$ there exist analytic functions $\Psi_\varepsilon\in C^\omega(\mathbb{T}^2)$ and $F_\varepsilon\in C^\omega(\mathbb{R})$ satisfying

$$\Delta \Psi_{\varepsilon} = F_{\varepsilon}(\Psi_{\varepsilon}) \tag{1}$$

and

$$\|\cos(y) - \Psi_{\varepsilon}\|_{C^{\omega}(\mathbb{T}^2)} = O(\varepsilon),$$
 (2)

with

$$\langle \Psi_{\varepsilon}, \cos(x) \cos(4y) \rangle = -\varepsilon^2 \frac{\pi^2}{128} + O(\varepsilon^3).$$
 (3)

• F_{ε} is a polynomial of degree 5, so if $\Psi_{\varepsilon} \in H^2$ then, by elliptic regularity, it is analytic.

Structures near Kolmogorov

Structures near Kolmogorov [CZ, Elgindi, Widmayer '20]

There exists $\varepsilon_0>0$ such that for any $0<\varepsilon\leq\varepsilon_0$ there exist analytic functions $\Psi_\varepsilon\in C^\omega(\mathbb{T}^2)$ and $F_\varepsilon\in C^\omega(\mathbb{R})$ satisfying

$$\Delta \Psi_{\varepsilon} = F_{\varepsilon}(\Psi_{\varepsilon}) \tag{1}$$

and

$$\|\cos(y) - \Psi_{\varepsilon}\|_{C^{\omega}(\mathbb{T}^2)} = O(\varepsilon),$$
 (2)

with

$$\langle \Psi_{\varepsilon}, \cos(x) \cos(4y) \rangle = -\varepsilon^2 \frac{\pi^2}{128} + O(\varepsilon^3).$$
 (3)

- F_{ε} is a polynomial of degree 5, so if $\Psi_{\varepsilon} \in H^2$ then, by elliptic regularity, it is analytic.
- There are families of non-trivial (i.e. not in the kernel of \mathcal{L}_K), non-shear and stationary solutions $U_{\varepsilon} := \nabla^{\perp} \Psi_{\varepsilon} : \mathbb{T}^2 \to \mathbb{R}^2$ of the incompressible Euler equations.

The general strategy

To find a larger class of solutions near Kolmogorov, we make the ansatz

$$\Psi_{\varepsilon} = \Psi_{K} + \varepsilon \psi, \qquad F_{\varepsilon} = F_{K} + \varepsilon f,$$

which yields a nonlinear elliptic equation for ψ , with f to be determined as well,

$$\Delta \psi + \psi = f(\Psi_K + \varepsilon \psi).$$

GOAL

Find (f, ψ) , with ψ even in x and y separately, such that

$$\Delta \psi + \psi = f(\cos(y) + \varepsilon \cos(x) + \varepsilon \psi),$$
 with $\psi \perp \ker(\Delta + 1),$

with f as a quintic polynomial (with coefficients $A, B \in \mathbb{R}$ to be determined as functionals of ψ and $\varepsilon > 0$)

$$f(A, B; s) = As + Bs^3 + \frac{1}{5}s^5.$$

Explicitly

This amounts to solve

$$\Delta \psi + \psi = A\cos(y) + B\cos^{3}(y) + \frac{1}{5}\cos^{5}(y)$$
$$+ \varepsilon \psi \left(A + 3B\cos^{2}(y) + \cos^{4}(y) \right)$$
$$+ \varepsilon \cos(x) \left(A + 3B\cos^{2}(y) + \cos^{4}(y) \right)$$
$$+ R(B, \psi, \varepsilon; x, y),$$

with
$$R(B, \psi, \varepsilon; x, y) = O(\varepsilon^2)$$
.

Solvability conditions (SC)

$$\langle f(A, B; \cos(y) + \varepsilon \cos(x) + \varepsilon \psi), \cos(x) \rangle = 0$$
$$\langle f(A, B; \cos(y) + \varepsilon \cos(x) + \varepsilon \psi), \cos(y) \rangle = 0.$$

The contraction set-up

$$\begin{split} X := \Big\{ \psi \in H^2 : \psi(-x,y) = \psi(x,-y) = \psi(x,y), \quad \psi \perp \cos(y), \cos(x), \\ \big| \langle \psi, \cos^2(y) \cos(x) \rangle \big| + \big| \langle \psi, \cos^4(y) \cos(x) \rangle \big| \leq \frac{1}{100}, \quad \|\psi\|_{H^2} \leq 10 \Big\}. \end{split}$$

The map $K_{\varepsilon}: X \to H^2$

We look for a fixed point of

$$\psi \mapsto \left[(x,y) \mapsto (1+\Delta)^{-1} f(A(\psi;\varepsilon), B(\psi,\varepsilon); \cos(y) + \varepsilon \cos(x) + \varepsilon \psi) \right]$$

$$\begin{split} \Psi_{\varepsilon} &= \cos(y) + \varepsilon \left[\cos(x) + c_0 \cos(3y) - c_1 \cos(5y) \right] \\ &+ \varepsilon^2 \left[-c_2 \cos(x) \cos(4y) - \frac{1}{32} b_1 \cos(3y) - c_3 \cos(7y) + c_4 \cos(9y) \right] \\ &+ O(\varepsilon^3). \end{split}$$

Many such families $(\Psi_{\varepsilon})_{\varepsilon}$ exist (can F_{ε} at order ε^2).

Remarks and consequences

Inviscid damping

$$\begin{cases} \partial_t \omega + \mathcal{L}_K \omega = -\boldsymbol{u} \cdot \nabla \omega, \\ \boldsymbol{u} = \nabla^{\perp} \psi, \quad \Delta \psi = \omega. \end{cases}$$

- Wei, Zhang, Zhao '17: there is linear inviscid damping, namely, linearly all modes away from the kernel of \mathcal{L}_K decay.
- CZ, Elgindi, Widmayer '20: the result cannot be extended perturbatively at the nonlinear level, no matter the regularity. The dynamics near Kolmogorov on T² is much richer.

Obstructions on the Square Torus

Not all directions are good! There are elements of ker \mathcal{L}_K which cannot arise as projections of stationary states.

Obstructions on the Torus

If for some $\ell \in \mathbb{N}$, $\ell > 2$,

$$\frac{\mathbb{P}_{K}(\Omega_{*}-\cos(y))}{\|\mathbb{P}_{K}(\Omega_{*}-\cos(y))\|_{L^{2}}}=\sin(\ell y)+\cos(x),$$

then there exists $\varepsilon_0 > 0$ small so that if $\|\Omega_* - \cos(y)\|_{H^6} = \varepsilon < \varepsilon_0$, then Ω_* is not a stationary solution to the 2d Euler equations.

Rigidity on Rectangular Tori

Rigidity near Kolmogorov on a rectangular torus

Consider the stationary solution $U_K(x,y)=(\sin(y),0)$ on \mathbb{T}^2_δ , $\delta>0$ with $\delta\not\in\mathbb{N}$. There exists $\varepsilon_0>0$ (depending on δ) such that if $U:\mathbb{T}^2_\delta\to\mathbb{R}^2$ is a further stationary solution to the Euler equations with

$$\|U-U_K\|_{H^3}\leq \varepsilon_0,$$

then U = U(y) is necessarily a shear flow.

Rigidity near Poiseuille flow

Near Poiseuille flow, even any nearby travelling wave solution must simply be a shear flow.

Rigidity near Poiseuille

Let s > 5, and consider the 2d Euler equations on $\mathbb{T} \times [-1, 1]$

$$\partial_t U + U \cdot \nabla U + \nabla P = 0, \qquad \nabla \cdot U = 0, \qquad U_2(x, \pm 1) = 0.$$

There exists $\varepsilon_0 > 0$ such that if U(x - ct, y), with $c \in \mathbb{R}$, is any traveling wave solution that satisfies

$$\|\Omega + 2y\|_{H^s} \le \varepsilon_0$$
, where $U = \nabla^{\perp} \Psi$, $\Delta \Psi = \Omega$,

then it follows that $U \equiv (U_1, 0)$, that is, U is necessarily a shear flow.

Enhanced Dissipation near Bar States on \mathbb{T}^2

The linearization of the Navier-Stokes equations near the bar states $\Omega_{\it bar} = -{\rm e}^{-\nu t}\cos(y)$ is then given by

$$\partial_t f + e^{-\nu t} \mathcal{L}_K f = \nu \Delta f.$$

Ibrahim, Maekawa and Masmoudi '17 and Wei, Zhang, Zhao '17 showed that

$$\|\mathbb{P}_{\mathcal{D}}f(t)\|_{L^2} \lesssim \mathrm{e}^{-c_1\nu^{1/2}t}\,\|\mathbb{P}_{\mathcal{D}}f(0)\|_{L^2}\,, \qquad \forall t \leq \frac{\tau}{\nu}, \qquad \mathcal{D} := (\ker \mathcal{L}_K)^\perp.$$

Typical nonlinear transition threshold

At the nonlinear level, there exists $\gamma \geq 0$ such that if

$$\|\mathbb{P}_{\mathcal{D}}\omega^{in}\|_{X} \lesssim \nu^{\gamma} \qquad \Rightarrow \qquad \|\mathbb{P}_{\mathcal{D}}\omega(t)\|_{L^{2}} \lesssim e^{-c_{1}\nu^{1/2}t} \|\mathbb{P}_{\mathcal{D}}\omega^{in}\|_{L^{2}}$$

- True for rectangular tori (Wei, Zhang, Zhao '17)
- True for Poiseuille flow (CZ, Elgindi, Widmayer '19)

No Threshold near Bar States on \mathbb{T}^2

No nonlinear threshold

For any $\nu>0$ there exists $0<\varepsilon_0\ll\nu$ with the following property: let $0<\varepsilon\leq\varepsilon_0$ and let $\Omega_\varepsilon=\Delta\Psi_\varepsilon$ be the vorticity of the stationary Euler flow found before. Then $\mathbb{P}_{\mathcal{D}}\Omega_\varepsilon$ is not dissipated at an enhanced rate: i.e. the solution Ω^ν of the initial value problem

$$\begin{cases} \partial_t \Omega^{\nu} + U^{\nu} \cdot \nabla \Omega^{\nu} = \nu \Delta \Omega^{\nu}, \\ \Omega^{\nu}(0) = \Omega_{\varepsilon}, \end{cases}$$

on \mathbb{T}^2 satisfies for all $t \in \left[\frac{1}{2\nu}, \frac{1}{\nu}\right]$ the lower bound

$$\|\mathbb{P}_{\mathcal{D}}\Omega^{
u}(t)\|_{L^{2}}\gtrsim \|\mathbb{P}_{\mathcal{D}}\Omega_{arepsilon}\|_{L^{2}}\,.$$

In the right direction?

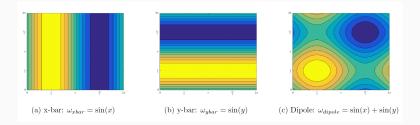


Figure 2: M. Beck, E. Cooper, G. Lord, K. Spiliopoulos

In the right direction?

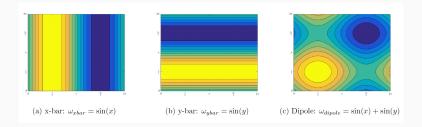


Figure 2: M. Beck, E. Cooper, G. Lord, K. Spiliopoulos

THANK YOU